{ "cells": [ { "cell_type": "markdown", "id": "26d52ad7", "metadata": {}, "source": [ "# Dimensions in Array" ] }, { "cell_type": "code", "execution_count": 4, "id": "47df926f", "metadata": {}, "outputs": [], "source": [ "import numpy as np" ] }, { "cell_type": "markdown", "id": "e1997937", "metadata": {}, "source": [ "## One dimensional Array" ] }, { "cell_type": "code", "execution_count": 5, "id": "f8161ad5", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([1, 2, 3, 4])" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array([1,2,3,4])" ] }, { "cell_type": "markdown", "id": "d0466997", "metadata": {}, "source": [ "- Represented in single axis" ] }, { "cell_type": "markdown", "id": "cd554137", "metadata": {}, "source": [ "## Two Dimensional Array" ] }, { "cell_type": "code", "execution_count": 6, "id": "e242a951", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1, 2],\n", " [3, 4]])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array([[1,2],[3,4]])" ] }, { "cell_type": "code", "execution_count": 10, "id": "07d21eea", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([[1, 2, 3, 4]])" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "np.array([[1,2,3,4]])" ] }, { "cell_type": "markdown", "id": "40b4651d", "metadata": {}, "source": [ "- Represented in rows and columns as matrix\n", " - means 2 axis are required\n", " \n", "- Representation\n", " - 0 1\n", " - 0 [1,2]\n", " - 1 [3.4]\n", "- Axis becomes 0,1 and 0,1\n", " - at (0,0) 1 is present\n", " - at (0,1) 2 is present\n", " - at (1,0) 3 is present\n", " - at (1,1) 4 is present" ] }, { "cell_type": "markdown", "id": "4c163bfb", "metadata": {}, "source": [ "## Checking dimension of array" ] }, { "cell_type": "markdown", "id": "52ecbeae", "metadata": {}, "source": [ "- ndim attribute is used" ] }, { "cell_type": "code", "execution_count": 7, "id": "5fafc363", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "1" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "a=np.array([1,2,3,4])\n", "a.ndim" ] }, { "cell_type": "code", "execution_count": 9, "id": "22251914", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "2" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "b=np.array([[1,2,3,4]])\n", "b.ndim" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.12" } }, "nbformat": 4, "nbformat_minor": 5 }